skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Castañeda-Moya, Edward"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Monthly litterfall data is being collected in two mangrove-dominated regions (Shark River and Taylor Slough) in South Florida. Three sites (SRS4, SRS5, SRS6) in the Shark River region and one site (TS/Ph8) in the Joe Bay area region were used to characterize patterns of litterfall production. At each mangrove site 10 litter baskets (0.5 x 0.5 m) were placed in two 20 x 20 m plots (five baskets per plot). Data have been collected since January 2001. Statistical analysis is being performed. See also Shark River mangrove litterfall carbon and nutrients data package knb-lter-fce.1266 (https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-fce&identifier=1266). 
    more » « less
  2. Early to intermediate ontogenetic stages of trees are important in forest regeneration. However, these critical life stages are often overlooked due to survey intensity and impracticality and/or disinterest in characterizing early life stage cohorts. This problem is particularly pervasive in mangrove forests where visibility of smaller stature trees may be limited by tidal flooding and younger cohorts are particularly vulnerable to changing hydrologic and biogeochemical conditions driven by climate change. Lacking data on early life stages in mangrove forests makes it difficult to predict ecosystem degradation and inform habitat resilience and restoration in one of the earth's most valuable blue carbon ecosystems. We identify challenges to collecting empirical data on early to intermediate age classes in mangroves and provide solutions to characterizing these cohorts. We emphasize the importance of gathering these data for improved understanding of forest regeneration dynamics and provide multi-scalar solutions to quantify vegetation structure of mangrove forest. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Mangroves play a crucial role in mitigating hurricane impacts in coastal ecosystems, and their adaptive traits enable regeneration and forest recovery following these disturbances. Yet, how species‐specific regeneration varies across life stages and interacts with environmental conditions is poorly understood. We quantified regeneration rates of three dominant species of mangrove seedlings and saplings (Avicennia germinans,Laguncularia racemosa, andRhizophora mangle) recovering from a major hurricane. We selected forests with varying light availability and phosphorus (P) gradients in the Everglades (Florida, USA). From 2020 to 2022, we measured biannual stem elongation, height, and density of seedlings and saplings, and collected porewater variables (salinity, sulfide, and inorganic nutrients) and continuous light intensity to assess species‐specific drivers of regeneration. Species‐specific growth rates, total height, and density varied across sites, driven by differences in porewater P and light. Growth rates ofR. mangleseedlings and bothR. mangleandL. racemosasaplings were influenced by light, whileA. germinansgrowth rates were unaffected. OnlyR. mangleandL. racemosasaplings were influenced by porewater P, while growth of both seedlings and saplings was unaffected by porewater salinity and sulfide. Mangrove regeneration post‐disturbance is explained by spatial differences in subsidies and stressors and the composition of species and life stages, underscoring complex regeneration strategies in mixed‐species forests. 
    more » « less
  4. This dataset package encompasses measurements from field surveys of mangrove regeneration, porewater variables, and light conditions across six mangrove sites in the coastal Everglades. The goal of this project was to quantify mangrove regeneration of seedlings and saplings in mid- and downstream locations within three estuaries in Everglades National Park, Florida, USA. We assessed the effects of porewater variables and light conditions on the observed regeneration patterns. The package includes seven datasets: FCE1268_Porewater: Contains measurements of porewater salinity, sulfide, ammonia, nitrite, orthophosphate, and nitrate at a 30 cm depth. Porewater surveys were conducted biannually from 09-10-2020 to 05-17-2022. See also similar porewater data for Florida Coastal Everglades (FCE) long-term sites in data packages knb-lter-fce.1169 and knb-lter-fce.1171, which contain data for SRS-5 and SRS-6, available in the FCE LTER website's data catalog or the EDI repository. FCE1268_Foliar_Nutrient_Content dataset, collected in August 2022, includes measurements of foliar nutrient content (total carbon, total nitrogen, and total phosphorus) for three mangrove species (A. germinans, L. racemosa, R. mangle) of two life stages—seedlings (height < 1 m) and saplings (height ≥ 1 m and Diameter at Breast Height (DBH) < 2.5 cm). FCE1268_Light contains light intensity (foot-candle) measurements taken at 1-hour intervals from 09-18-2020 to 08-29-2022 at mangrove sites and converted photosynthetic active radiation values from an outdoor mesocosm experiment. FCE1268_Sapling_Density provides biannual count measurements of individuals at the sapling plot level (4 m^-2) within each site from 07-09-2020 to 08-29-2022. FCE1268_Seedling_Density contains biannual count measurements of individuals at the seedling plot level (m^-2) within each site from 07-07-2020 to 08-29-2022. FCE1268_Sapling_Regeneration contains height, crown area, and stem elongation measurements of tagged sapling individuals at the plot level (4 m^-2) from 07-09-2020 to 08-29-2022. FCE1268_Seedling_Regeneration contains height, crown area, and stem elongation measurements of tagged seedling individuals at the plot level (m^-2) from 07-07-2020 to 08-29-2022. Data collection for all datasets is complete. 
    more » « less
  5. In September 2017, Hurricane Irma made landfall in South Florida, causing a great deal of damage to mangrove forests along the southwest coast. A combination of hurricane strength winds and high storm surge across the area resulted in canopy defoliation, broken branches, and downed trees. Evaluating changes in mangrove forest structure is significant, as a loss or change in mangrove forest structure can lead to loss in the ecosystems services that they provide. In this study, we used lidar remote sensing technology and field data to assess damage to the South Florida mangrove forests from Hurricane Irma. Lidar data provided an opportunity to investigate changes in mangrove forests using 3D high-resolution data to assess hurricane-induced changes at different tree structure levels. Using lidar data in conjunction with field observations, we were able to model aboveground necromass (AGN; standing dead trees) on a regional scale across the Shark River and Harney River within Everglades National Park. AGN estimates were higher in the mouth and downstream section of Shark River and higher in the downstream section of the Harney River, with higher impact observed in Shark River. Mean AGN estimates were 46 Mg/ha in Shark River and 38 Mg/ha in Harney River and an average loss of 29% in biomass, showing a significant damage when compared to other areas impacted by Hurricane Irma and previous disturbances in our study region. 
    more » « less
  6. ABSTRACT Mangrove forests are typically considered resilient to natural disturbances, likely caused by the evolutionary adaptation of species‐specific traits. These ecosystems play a vital role in the global carbon cycle and are responsible for an outsized contribution to carbon burial and enhanced sedimentation rates. Using eddy covariance data from two coastal mangrove forests in the Florida Coastal Everglades, we evaluated the impact hurricanes have on mangrove forest structure and function by measuring recovery to pre‐disturbance conditions following Hurricane Wilma in 2005 and Hurricane Irma in 2017. We determined the “recovery debt,” the deficit in ecosystem structure and function following a disturbance, using the leaf area index (LAI) and the net ecosystem exchange (NEE) of carbon dioxide (CO2). Calculated as the cumulative deviation from pre‐disturbance conditions, the recovery debt incorporated the recapture of all the carbon lost due to the disturbance. In Everglades mangrove forests, LAI returned to pre‐disturbance levels within a year, and ecosystem respiration and maximum photosynthetic rates took much longer, resulting in an initial recovery debt of 178 g C m−2at the tall forest with limited impacts at the scrub forest. At the landscape scale, the initial recovery debt was 0.40 Mt C, and in most coastal mangrove forests, all lost carbon was recovered within just 4 years. While high‐intensity storms could have prolonged impacts on the structure of subtropical forests, fast canopy recovery suggests these ecosystems will remain strong carbon sinks. 
    more » « less
  7. Ball, Marilyn (Ed.)
    Abstract We investigated how mangrove-island micro-elevation (i.e., habitat: center vs edge) affects tree physiology in a scrub mangrove forest of the southeastern Everglades. We measured leaf gas exchange rates of scrub Rhizophora mangle L. trees monthly during 2019, hypothesizing that CO2 assimilation (Anet) and stomatal conductance (gsw) would decline with increasing water levels and salinity, expecting more considerable differences at mangrove-island edges than centers, where physiological stress is greatest. Water levels varied between 0 and 60 cm from the soil surface, rising during the wet season (May–October) relative to the dry season (November–April). Porewater salinity ranged from 15 to 30 p.p.t., being higher at mangrove-island edges than centers. Anet maximized at 15.1 μmol m−2 s−1, and gsw was typically <0.2 mol m−2 s−1, both of which were greater in the dry than the wet season and greater at island centers than edges, with seasonal variability being roughly equal to variation between habitats. After accounting for season and habitat, water level positively affected Anet in both seasons but did not affect gsw. Our findings suggest that inundation stress (i.e., water level) is the primary driver of variation in leaf gas exchange rates of scrub mangroves in the Florida Everglades, while also constraining Anet more than gsw. The interaction between inundation stress due to permanent flooding and habitat varies with season as physiological stress is alleviated at higher-elevation mangrove-island center habitats during the dry season. Freshwater inflows during the wet season increase water levels and inundation stress at higher-elevation mangrove-island centers, but also potentially alleviate salt and sulfide stress in soils. Thus, habitat heterogeneity leads to differences in nutrient and water acquisition and use between trees growing in island centers versus edges, creating distinct physiological controls on photosynthesis, which likely affect carbon flux dynamics of scrub mangroves in the Everglades. 
    more » « less
  8. Environmental temperature is a widely used variable to describe weather and climate conditions. The use of temperature anomalies to identify variations in climate and weather systems makes temperature a key variable to evaluate not only climate variability but also shifts in ecosystem structural and functional properties. In contrast to terrestrial ecosystems, the assessment of regional temperature anomalies in coastal wetlands is more complex since the local temperature is modulated by hydrology and weather. Thus, it is unknown how the regional free-air temperature (T Free ) is coupled to local temperature anomalies, which can vary across interfaces among vegetation canopy, water, and soil that modify the wetland microclimate regime. Here, we investigated the temperature differences (offsets) at those three interfaces in mangrove-saltmarsh ecotones in coastal Louisiana and South Florida in the northern Gulf of Mexico (2017–2019). We found that the canopy offset (range: 0.2–1.6°C) between T Free and below-canopy temperature (T Canopy ) was caused by the canopy buffering effect. The similar offset values in both Louisiana and Florida underscore the role of vegetation in regulating near-ground energy fluxes. Overall, the inundation depth did not influence soil temperature (T Soil ). The interaction between frequency and duration of inundation, however, significantly modulated T Soil given the presence of water on the wetland soil surface, thus attenuating any short- or long-term changes in the T Canopy and T Free . Extreme weather events—including cold fronts and tropical cyclones—induced high defoliation and weakened canopy buffering, resulting in long-term changes in canopy or soil offsets. These results highlight the need to measure simultaneously the interaction between ecological and climatic processes to reduce uncertainty when modeling macro- and microclimate in coastal areas under a changing climate, especially given the current local temperature anomalies data scarcity. This work advances the coupling of Earth system models to climate models to forecast regional and global climate change and variability along coastal areas. 
    more » « less
  9. null (Ed.)
    To determine whether mangrove soil accretion can keep up with increasing rates of sea level rise, we modeled the theoretical, steady-state (i.e., excluding hurricane impacts) limits to vertical soil accretion in riverine mangrove forests on the southwest coast of Florida, USA. We measured dry bulk density (BD) and loss on ignition (LOI) from mangrove soils collected over a period of 12 years along an estuarine transect of the Shark River. The plotted relationship between BD and LOI was fit to an idealized mixing model equation that provided estimates of organic and inorganic packing densities in the soils. We used these estimates in combination with measures of root production and mineral deposition to calculate their combined contribution to steady-state, vertical soil accretion. On average, the modeled rates of accretion (0.9 to 2.4 mm year−1) were lower than other measured rates of soil accretion at these sites and far less than a recent estimate of sea level rise in south Florida (7.7 mm year−1). To date, however, no evidence of mangrove “drowning” has been observed in this region of the Everglades, indicating that assumptions of the linear accretion model are invalid and/or other contributions to soil accretion (e.g., additional sources of organic matter; feedbacks between physical sedimentation processes and biological responses to short-term environmental change) make up the accretion deficit. This exercise highlights the potential positive impacts of hurricanes on non-steady-state soil accretion that contribute to the persistence of neotropical mangroves in regions of high disturbance frequency such as the Gulf of Mexico and the Caribbean region. 
    more » « less